## Small-angle Scattering for everyone: how to unlock the power of this ancient technique
The obscure, yet fundamental technique of scattering can unlock essential information on the fine structure of materials. For you, it can help you understand how your batteries charge, how squid backbones work, or how hundreds of small variations in your syntheses affect your samples.
As a nondestructive technique, it also measures your materials *in situ* or operando, as you pull it, heat it, electrify it, or align it one way or another. Scattering can be done using light, X-rays, neutrons, and even electrons, giving you the choice on which probe is best for you. The only downside? Scattering will always remain a complicated technique to do right.
The technique gives you only one piece of information: the length distribution of density in your sample. How you interpret this (rather abstract) piece of information is up to you and your samples. Unlike microscopy, where the real-space image can be interpreted almost intuitively and artefacts are easier to spot, in scattering you cannot always easily identify artefacts. Therefore, the only way to do scattering experiments correctly is through rigour and care. For those of us with that particular eccentricity, seeing the rigour and care pay off is exhilarating, and opens the door to a life of happiness and excitement.
This lecture will introduce scattering (in particular using X-rays and neutrons), what it is, what you can (and cannot) get out of it, and how to approach your scattering experiment. Regarding the experimental section, it will discuss the five parts that make up a successful scattering experiment based on real-life examples:
- Preparation: which and how you prepare your samples affects what you can get out of the interpretation
- Measurement: The machine design and your measurement choices dictates the final quality of your data
- Correction: Obtaining trustworthy scattering curves will greatly improve the speed and quality of your analysis.
- Analysis: Do you linearize, use generic scattering models, perform classical least-squares fitting, play with Monte-Carlo analysis or transform your data.. Some tips to help you make a choice.
- Interpretation: what does the analysis of all your samples tell you? Can you fit the puzzle pieces together to form a piece of knowledge?
For further information, please feel free to explore the https://lookingatnothing.com/ weblog, the https://youtube.com/drheaddamage video channel, or by asking me in person or by email for specific questions at brian.pauw@bam.de . Some introductory reading can be found in the following papers:
- Pauw, B. R. (2013): Everything SAXS: small-angle scattering pattern collection and correction. _J. Phys.: Condens. Matter_ 25: 383201. DOI: [10.1088/0953-8984/25/38/383201](http://dx.doi.org/10.1088/0953-8984/25/38/383201)
- B. R. Pauw, A. J. Smith, T. Snow, N. J. Terrill, A. F. Thünemann, (2017): The modular SAXS data correction sequence for solids and dispersions, _Journal of Applied Crystallography_, 50: 1800–1811, DOI: [10.1107/S1600576717015096](https://doi.org/10.1107/S1600576717015096)
- G. J. Smales, B. R. Pauw (2021): The MOUSE project: a meticulous approach for obtaining traceable, wide-range X-ray scattering information. _Journal of instrumentation_ 16 (6) P06034. DOI: [10.1088/1748-0221/16/06/P06034](https://doi.org/10.1088/1748-0221/16/06/P06034)